
SQL Injection Prevention by Blocking Internet
Protocol Address after Analysing Error Message of

Database Server
Sanjay Mishra#1, Subodh Mishra*2, Vivek Sharma#3

#TIT College, CSE Department, RGPV
Bhopal, Madhya Pradesh, India

*TIT College, RGPV
 Bhopal, Madhya Pradesh

Abstract— Web applications are used tremendously now-a-
days as a means of dissemination for online services having
financial consequences such as online payment of bills, e-
banking, e-commerce etc. Social networking, emails, e-
commerce companies, needs high security, confidentiality,
integrity to availability to keep sensitive data. In order to
protect these data from unauthorized access the system must
be configure and programming in a manner that it’s ensure
the trustworthiness for storing and publishing of information.
SQL Injection Attacks (SQLIAs) is technique in which a
portion of malicious SQL query segment is injected as a user
input which could result to obtain unrestricted access to
confidential information from database. In this paper we will
discuss different type of SQLIAs technique and error message
given by database server when attackers apply illegal query
for the same. And, proposed a novel technique to defend
SQLIAs at different level after comparing runtime error
message given by database server. If same Internet Protocol
(IP) address is used for code injection numbers of time then it
build a protective layer which reduce the data leakage and
block the IP address.

Keywords— Structure Query Language (SQL), Structure
Query Language Injection Attacks (SQLIAs), Internet
Protocol (IP) Address, Vulnerabilities, Web Application, Web
Security.

I. INTRODUCTION

The widespread adoption of the web applications are
used for variety of purpose like simple thing as accessing of
blogs to those having financial consequences and other
banking related difficult tasks. As the usages of internet are
increasing day by day, the cyber-crime is also increasing.
Web application is normally cooperate with database.
Hence security has become major concern to protect
application against command injection attacks. In 2013
SQLIAs was rated as number one attack by Open Web
Application Security Project (OWASP) [1]. In report it
showed that most of the security attacks are caused by
illegal query into an entry field for execution and can access
the confidential data without any authorization. It has been
seen that 97% were vulnerable to web attacks. One class of
attacks that has been particularly dangerous is SQL
injection [2]. There is no any requirement of hacking any
network security protocol or breaking any encryption
mechanism of the database server and network. SQL
injection exploits the vulnerabilities in input validation and

force database server to execute the query from backend
and return the relevant information to attackers. Sometimes
attackers tries to alter the database cause repudiation issue
such as voiding transaction or changing balance can make
business is in danger. Furthermore, attackers can exploits
flows of websites, such as requiring database version,
extracting and modification data, bypass the authentication,
controlling systems, upgrading users privileges and shutting
down database[3]. There are many methods and algorithms
are proposed to prevent these injections but there are no any
full proof solutions and unfortunately SQLIAs still exits.

II. BACKGROUND

SQL injections are using security vulnerabilities for
exploiting the database server. An attacker can extract
confidential data like financial, medical and personal
information’s by input drives of the application logic. The
logic of application and malicious query can easily be
injected by attackers in form of URL‟s, cookies after
analysing the error message given by the database server.
Whenever an illegal query is applied, the different database
server response differently for the same query by which an
attacker can easily identified the version and type of
database that a web application using. This information can
allow an attacker to craft a specific attack by which
database schema information such as table name, column
names, column data types, data value and other valuable
information is extracted. Attackers can also alter the schema
of database, locking or dropping database tables and
shutdown the web application which tends to denying
services to other users. During the development of web
application developer generally rely on query building with
string concatenation to construct SQL statements. When
attacks apply queries based on varying condition set by the
users, its cause vulnerabilities for SQL injections. Some
developer used parameterized query or stored procedure but
inappropriate uses of these such as absence of checks and
absence or misuse of delimiters in query string cause
SQLIAs.

III. SQL INJECTION ATTACKS

SQL injection attacks can be prevented only when we
know about its implementation and its phenomenon. Types
of SQL injection known to date and its description with
attacks examples are discussed below:

ISSN:0975-9646

Sanjay Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 566-569

www.ijcsit.com 566

A. Tautology

The tautology attack based on injecting code in which
the conditional statements “WHERE” clause is evaluated
always true. This attack is used to bypass the authentication
pages and extracting data because the tautologies ignore all
WHERE condition to return all records.
Example: An attackers submits 0’ or ‘0’=’0 and sometimes
the most common tautology ” or 1=1 –“ that put whole
condition true.
Select ACCOUNTS from USERS where LOGIN = 0’ or
‘0’=’0 and PASSWORD = 0’ or ‘0’=’0
This code inject transforms the entire WHERE clause into
tautology.

B. Illegal/Logically Incorrect Query

This attack is used to gather information about database
type and its schema which is consider as preliminary and
treated as reconnaissance phase. Whenever, illegal or
logically queries inject, an error messages is generated
which can reveal vulnerable or injectable parameters by
which an attacker can also perform database finger-printing,
this is used to deduced the data types of certain column,
name of tables etc.
Example: Select ACCOUNTS from USERS where LOGIN
= “sanjay” and PASSWORD = “12345”;
Error: Warning! mysql_fetch_array(): supplied argument is
not a valid MySQL result. Password type not found.
Here error message expose the value of string password is
not matching, so some type conversion will use for the
same.

C. Union Query

The union query in SQL injection attack is used to
exploit the vulnerabilities of database for extracting data
when structure of database such as table name and columns
names is known. This attack returns a dataset by the
database after unioning the query with original SQL query.
Example:
http://www.victims.com/showproduct.php?id=304 union all
select 1, 2 - -
Error: All queries in the SQL statement containing a
UNION operator must have equal number of expressions in
their target lists.
http://www.victims.com/showproduct.php?id=304 union all
select 1, 2, 3 - -
No Error
Here, attacker selects his desire information in form three
columns. Now, following attack retrieve the desired
database name.
http://www.victims.com/showproduct.php?id=-304 select
all 1, database_name, 3 - -
By using this query an unauthorized user extract the
structure of database and data inside it.

D. Stored Procedures

This type of attacks is used for performing privilege
escalation and executing remote command. The method is
use by developer as there is misconception that by using the

stored procedure SQL injection will be avoided but web
application is vulnerable as normal applications. Attack
such as denial of service, buffer overflow and for running
the arbitrary code on server to escalate their privileges can
easily be performed because stored procedure uses special
scripting languages [4].

E. Piggy Backed Queries

In this attack, the attackers include new distinct queries
into the original query and both the query instead of joining
each other it run independently without any modifications
in query [5]. This type of attack is only executed when
database can run multiple queries in same line.
Example: select Account from USERS where
USERNAME=‟Administrator” and
PASSWORD=‟password”; drop table USERS - - and
PIN=‟123456” - -
Here “- -” is used to ignore rest of the query.

F. Inferences

In this attack attacker inject a query which is being
modified, but database is secured enough and do not
provide any error message. Then attackers observe the
changing behaviours of web application in the forms of
function and response i.e. time taken to load the result page
of the web applications. This attack can also use to extract
the vulnerable parameters with additional information.
Example: http://www.victims.com/-- and If (version () like
2; sleep (20), “false”) - -
It shows if database version having number 2 have 20
second delay in response while replaying and loading of
page. By the help of this attack an attacker can know the
type and version of database management system as
“WAITFOR” command only be executed by Microsoft
SQL Server or “SLEEP (n)” is used to making delay by
Oracle and MySQL servers.

G. Alternate Encoding

In this attack an attackers bypass the filter by modifying
the text string in Base64, Hexadecimal, ASCII, and
Unicode such as: exec (char (112 97 115 115 119 111 114
100)) - - ; means password.
Suppose a system is configured by an Intrusion Detection
System (IDS), with some predefined signature such as 0’ or
‘0’=’0 and if it’s found then system drop the connection and
show error.
Error message: SQL injection attempt is found. Server will
block your IP in next attempt.
0’ or ‘0’=’0 SQL injection string which is encoding in other
form by IDS.
Hexadecimal encoding of 0’ or ‘0’=’0 is
302019206f722020183020193d20193020.
ASCII encoding of 0’ or ‘0’=’0 is 48 NULL 32 111 114 32
NULL 48 NULL 61 NULL 48 32.
Unicode encoding of 0’ or ‘0’=’0 is
\u0030\u2019\u006f\u0072\u2018\u0030\u2019\u003d\u20
19\u0030.

Sanjay Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 566-569

www.ijcsit.com 567

IV. RELATED WORK

Many existing techniques, such as input validation,
filtering, information-flow analysis, penetration testing and
defensive coding such as stored procedure can detect and
prevent a subset of the vulnerabilities that lead to SQLIAs.
The injected commands will be erroneously identified as
the normal SQL command by the database server which
will run them, and thus get the system to suffer damage or
intrusion [6]. But after studying about all these technique it
can be analyse that SQL injection can only be performed if
there are flaws in coding in a single line and if some error
message is generated by the database server. A Runtime
monitor [7] is then developed to observe the path taken by
critical variables and check them for compliance with the
obtained legal paths. During runtime, if the path taken by
the identified critical variables violates the legal paths
obtained, this implies that the critical variables consist of
the malicious input from the external user and the query
formed is trying to access confidential information from the
back-end database. This abnormal behaviour of the
application, due to the critical variables, is identified by the
runtime monitor and immediately notified to the
administrator. But the approaches do not detect and prevent
all other types of SQL injection Attack. We will discussed a
part of their approach when runtime monitor notified to the
administrator and at same point an attack pattern analyser
we will introduced which store attack pattern with error
message given by the database server in the prevention
module with user information such as Internet Protocol (IP)
address and logging time and logging time and when same
pattern is recognized with same IP address then block users
IP.

V. PROPOSED SOLUTION

The proposed approach is consisting of prevention module
which is converted with system that store user information
such as user IP and logging time. The proposed system
architecture consists of four systems that connected in a
manner which prevents SQL injection at runtime. Generally
writing secure code is best solution while making single
mistake makes whole system vulnerable for SQLIAs.

A. Attacks Database

The web application will configure with database of
attack pattern that consists of all patterns till that and some
predefined keyword that treated as attack patterns. If the
attack having matched with the pattern stored or even
keyword matched the whole query injected will treated as
attack and the Internet Protocol (IP) address of user is saved
as unauthorized user

B. Prevention Module

Prevention module is intermediate between all the
proposed phases and establishes communication with
attacks database, stored system and verification system. If
same attacks pattern is applied using same Internet Protocol
(IP) address it automatically detect SQLIAs and generate an
alarm for database server and display error message of
blocking IP to user via verification system.

Error Message: “HTTP-500 Internal Server Error”. SQLIAs
Identified! IP Blocked!

C. Stored System for Users

The system is stored the information of unauthorized
user with their Internet Protocol (IP) address. If any attack
is identified after comparing with predefined attack
keywords or pattern of SQLIAs from attacks database. If
any matched is found then it automatically stored the IP of
user as unauthorised user and detects unauthorized access.

D. Stored System for Users

The system identified the unauthorised user after
comparing with data saved in the store system for user
information. If stored system authenticates the system
validate user otherwise, display error message of
unauthorised aces and warn user for applying SQLIAs.
Error Message: Your IP is saved as you are trying to access
illegally! Next attempt block your access!

Fig. 1 A proposed Architecture for preventing SQL injection attacks after

analysing Error message of database server

Algorithm for Preventing SQLIAs by Analysing Error
Message of Database Server
Step 1: Store the input value entered by user in database
Server with Internet Protocol (IP) Address.
Step 2: If the string input is matched with database server
then authenticate the user else identified input as attack.
Step 3: Attack database matched the input with predefined
attacks patterns or keywords for SQLIAs.
Step 4: If only pattern is matched identified it as newly
attacks and stored the IP of user as unauthorized in store
system after saving the newly attack in database.
Step 5: Prevention Module store attack pattern as intrusion
and also identify user as authentic via verification system.
Step 6: If SQLIAs with same Internet Protocol (IP) is
injected then,
Step 7: Generate alert and alarm to database server is
generated and error message of blocking IP is pop-up for
same user.

Sanjay Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 566-569

www.ijcsit.com 568

VI. CONCLUSION

The prevention module prevents SQL injection by an
unauthorized user after analysing their injected query. If
Attacks Database detected the injecting query as SQLIAs, it
automatically save the attack pattern and if it newly identify,
one another pattern automatically inbuilt in database for
further matching and after onward it’s send the report to
prevention module. After detection, the Prevention Module
forwards all information of user such as login time and IP
address for further comparison. And if same pattern of
injection or some other SQL injection is identified by the
same IP address the Verification Module Display the error
message. In this paper we have presented a novel module
for preventing the SQL injection after analysing the error
message given by the database server followed by blocking
the IP of the attacker. The module works on any types and
version of the database server. The module considers two
things for preventions of SQL injections.
 Best code practices with considering the SQL

injections till date in attacks database.
 SQL Injection runtime prevention after analysing Error

message given by server.
The mechanism are helpful in detecting different type of
malicious activities in the network by combination of good
configuration of web server and using the best code in
configuring attacks database can increase the protection
against SQL Injection attacks.

VII. FUTURE WORK

This method works well to protect our application
against all type of SQL Injections detection and the
prevention mechanism using Error Message with blocking
Internet Protocol (IP) Address of attackers if particular
message is detected. But there is still a lot of room for
improvement in future is to adding more Error Message to
the rule and also detecting proxy IP when attacker using
VPN (Virtual Private Network). And also there may be
scope of preventing SQLIAs at various level recommended
in thesis. Those are our future follow-up research work.

REFERENCES
[1] OWASP Top Ten Project [EB/OL]. [2016-02-20].

https://www.owasp.org/index.php/Category:OWASP_Top_ten_prje
ct.

[2] Mehdi Kiani, Andrew Clark, George Mohay: Evaluation of
Anomaly Based Character Distribution Model in the Detection of
SQL injection Attacks, Third International Conference on
Availability, Reliability and Security Volume 00, Issue, 4-7
Page(s):47-55, IEEEE, March 2008.

[3] Meixing Le, Brent ByungHoon Kang: Double Guard-Detecting
Intrusions in Multitier Web Applications”, IEEE Transaction on
Dependable and Secure Computing Vol. 9, No. 4, July/August 2012.

[4] E.M.Fayo: Advanced SQL Injection in Oracle databases, Technical
report, Argeniss Information Security, Black Hat Beifings, Black
Hat USA; 2005.

[5] A.S.Gadgikar: Preventing SQL Injection Attacks Using Negative
Tainting Approach, DOI 10.1109/COMPSAC.2015.277.

[6] SQL injection[EB/OL]. http://en.wikipedia.org/wiki/SQL_injection.
[2016-02-20]

[7] Ramya Dharam and Sajjan.G.Shiva: Runtime Monitor to Detect and
Prevent Union Query based SQLIAs; DOI 10.1109/ITNG.2013.57,
IEEE 2013.

Sanjay Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 566-569

www.ijcsit.com 569

